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SUMMARY

This article deals with the maintenance optimization of a 
train air conditioning system. Indeed, SNCF (French Railway 
Company) has in charge the maintenance of its material. 

In order to model this system, we use dynamic reliability 
method,  the  Piecewise  Deterministic  Markov  Processes 
(PDMP).  A  deterministic  method  is  used  to  calculate  the 
reliability quantities : the finite volumes algorithm. 

The results  found in  this  study are  confidential,  so  we 
present results computed with fictive costs and laws. Thanks 
to this method, we have found a strategy which reduces the 
maintenance  cost  of  7% and the system failures  number  of 
22%.  Moreover,  we  observe  that  in  this  case,  the  finite 
volumes algorithm is faster than the Monte Carlo simulations. 

1 INTRODUCTION

For  a  railway  infrastructure  manager  as  the  SNCF, 
materiel  maintenance  constitutes  a  major  task  :  a  materiel 
failure is expensive and causes customers dissatisfaction. The 
SNCF has hence initiated researches in order to model aging 
systems,  in  view  of  its  facilities  maintenance.  This  article 
deals with an air conditioning system case. 

The air conditioning system is a parallel system consisting 
of  seventeen  aging  components.  Seven  of  them compel  the 
system to crash if they fail. The rest is located on two identical 
circuits that operate at the same time. The failure of one circuit 
does not coerce the system to break. However if the both of 
them collapse, the system also does.  The components lifetime 
distributions are Weibull’s : this signifies that the components 
age. 

Because  of  the  components  aging,  usual  Markov 
processes  like  Markov  jump  processes  can’t  be  used. 
Consequently, in order to model the air conditioning system, 
we  work  with  Markov  processes  named  Piecewise 
Deterministic Markov Processes (PDMP), see [1] and [2]. The 
reliability calculations  are often established by Monte Carlo 
simulations,  see  [3]  and  [4]  ;  however  this  method  takes 
usually too much time to optimize maintenance. Thus, we use 
a  finite  volumes  algorithm  which  solves  the  Chapman-

Kolmogorov equations. Indeed, this is a deterministic method 
which may be faster in this case.

In  the first  part,  the  methods  we  use  to  optimize  the 
maintenance  are  presented  :  the  PDMP,  the  finite  volumes 
algorithm, and the simulated annealing algorithm. Then the air 
conditioning system, its modelling by a PDMP, and the results 
of  the  optimization  are  described.  In  a  third  part,  the 
computation time with the Monte Carlo simulations and with 
the finite volumes algorithm are compared. In the end, some 
conclusions are given.

2 DESCRIPTION OF THE METHODOLOGY

2.1 Piecewise Deterministic Markov Process

The PDMP is a process exploited in dynamic reliability 
which has been introduced by Davis in 1984 [1],[2]. It  is a 
hybrid process (It,Xt)t>0. The first component It is discrete, with 
values in a finite state space E. Typically, it indicates the state 
- up or down - for each component of the system at time t. The 
second  component  Xt,  with  values  in  Rd,  stands  for 
environmental conditions, such as temperature, pressure, and 
in  our  case,  the  system  components  ages.  This  means  that 
PDMP can model a system with aging components. The two 
components  interact  with each other  :  the process  jumps at 
many countable isolated random times. By a jump from (It-,  
Xt-)=(i,x)  to  (It,Xt)=(j,y)  (with  (i,x),(j,y)∈ E× Rd),  the 
transition rate between the discrete states  i  and  j  depends on 
the environmental condition just before the jump  x, and is a 
function  x → a(i,j,x).  Similarly,  the environmental  condition 
just  after  the  jump,  Xt, is  distributed  according  to  some 
distribution μ(i,j,x)(dy) , which depends on both components just 
before the jump (i,x) and on the after jump discrete  state  j. 
Between jumps, the discrete component It is constant and the 
evolution  of  environmental  condition  Xt is  deterministic, 
solution of a set of differential equations which depends on the 
fixed state : given It=i for all t∈ [a,b], we have

( )tt XivX
dt
d ,=  (1)

In  addition,  when  Xt  reaches  a  border  called  Γ ,  the 
process jumps according the distribution  q(i,j,x)(dy) with  x∈ Γ, 



which depends on the component before the jump, i, and after 
the jump,  j. In this article, the border represents the time we 
execute preventive maintenance.

The reliability quantities we search, are calculated using 
PDMP distributions  at  time  t. To calculate  these  quantities, 
Monte-Carlo simulations can be used. However this method 
generates  large  computation  time.  In  this  paper,  we  use  a 
direct  calculation  method which  needs  the  PDMP marginal 
distributions. These ones at time t, noted πt(i,x), constitute the 
unique  solution  of  a  set  of  explicit  integro-differential 
equations  named  Chapman-Kolmogorov  equations  [5].  The 
issue is that the C-K equations are often impossible to directly 
solve. This article proposes another approach which delivers 
an approximation of the C-K equations solutions with a finite 
volumes algorithm [6], [7] and [8].         

2.2 The finite volumes algorithm

This  algorithm  calculates  an  approximation  of  PDMP 
marginal distributions. The principle is based on discretization 
of the time and of the environmental variable state space. The 
distribution  evolution  of  the  process  is  followed  and  the 
probability that the process is in a mesh, is computed time step 
by time step. This brings us to solve a linear system.

Its  computation  time  depends  on  one  parameter  :  the 
discretization step of the environmental variable state space, 
noted  h. The smaller the step is, the longer the computation 
time is and the more precise the results are. The calculations 
are executed with different values of h. The time discretization 
step is the maximum value that makes the algorithm converge.

We  use  this  algorithm  to  test  different  maintenance 
strategies.  The  first  one  is  a  preventive  maintenance  that 
occurs at time T in which too old components are changed. A 
component is considered as too old if during the maintenance, 
it  is  older  than  a  limit  age  defined  by  the  maintenance 
schedule.  In  order  to  optimize  this  strategy,  we  search  the 
preventive maintenance instant and the components limit age. 
The  second  one  is  the  opportunistic  maintenance  strategy. 
When the system crashes, the broken and too old components 
are replaced by new ones. However there are too many ways 
to apply these two strategies so all of them can’t be tested ; 
that is why we use an optimization algorithm : the  simulated 
annealing algorithm.

2.3 The simulated annealing algorithm

The  simulated  annealing  algorithm  [9]  is  a  stochastic 
algorithm that finds a global minimum of a function. It’s used 
when the optimum can not be directly found. This is the case 
when the function has too many variables. 

Wikipedia  website  gives  a  fine  explanation  of  the 
algorithm : “The name and inspiration come from annealing in 
metallurgy,  a  technique  involving  heating  and  controlled 
cooling of a material  to increase the size of its  crystals and 
reduce  their  defects.  The  heat  causes  the  atoms to  become 
unstuck from their initial positions (a  local  minimum of the 
internal  energy)  and  to  randomly  wander  through  states  of 
higher energy. The slow cooling brings them more chances to 
find configurations with lower internal energy than the initial 

one.
By analogy with this physical  process,  each step of the 

SA  algorithm  replaces  the  current  solution  by  a  random 
“nearby” solution, chosen with a probability that depends on 
the difference between the corresponding function values and 
on a global  parameter Te -  called the temperature  -  that  is 
gradually  decreased  during  the  process.  The  dependency  is 
such that the current solution almost randomly changes as Te 
is large, but increasingly “downhill” as  Te goes to zero. The 
allowance  for  “uphill”  moves  saves  the  method  from 
becoming stuck at local minima - which is the bane of greedier 
methods.”

3 THE AIR CONDITIONING SYSTEM

3.1 Description of the system

Figure 1 – Diagram of the air conditioning system

Shape Scale Cost
S,1 1.5 30 300
S,2 2 20 400
S,3 1.5 80 1000
S,4 2.5 50 800
S,5 1.2 60 250
S,6 2 20 400
S,7 3 40 300

A-B,1 2.5 35 200
A-B,2 1.3 25 1000
A-B,3 2 50 400
A-B,4 1.5 45 300
A-B,5 1.8 20 200

Table 1 - Weibull distributions coefficient and cost of the 
components

http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Local_minimum
http://en.wikipedia.org/wiki/Internal_energy
http://en.wikipedia.org/wiki/Local_minimum
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Crystallographic_defect
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Metallurgy
http://en.wikipedia.org/wiki/Annealing_(metallurgy)


The figure 1 describes the air conditioning system. It has 
seventeen  aging  components.  A  part  of  it  is  in  active 
redundancy and the rest  is  in series.  The first  part  has  two 
circuits called A and B. There are five components on circuit A 
and five on circuit B. Circuit A and circuit B are identical. The 
two branches  work together.  When a component on one of 
these branches fails, the components on the same branch stop 
aging. The system crashes if one component in series fails or 
if one component on circuit A and one component on circuit B 
fail.  When  the  air  conditioning  runs  out,  it  is  instantly 
repaired. The restoration consists on replacing the broken with 
new ones.

The components lifetime distributions are Weibull’s. The 
Weibull distributions coefficients and the components cost are 
exposed in table 1. The data are confidential  so the table 1 
does deliver fictitious figures.

3.2 Maintenance strategies

We try to establish two types  of maintenance.  The first 
one  is  making  a  single  preventive  maintenance,  and  during 
this review, the components that are older than specified age 
are changed. In order to optimize this strategy, we must look 
on  thirteen  parameters.  One  is  the  system  age  we  need  to 
practice preventive maintenance, and the rest corresponds to 
the components limit  ages.  If  a component is older than its 
limit age at the review time, it is replaced by a new one. The 
second  one  is  the  opportunistic  maintenance  strategy.  It  is 
about  taking  advantage  of  a  failure  by  simultaneously 
changing  too  old  components,  in  addition  to  the  broken 
components.  In  order  to  optimize  this  strategy,  we have  to 
look on twelve parameters, corresponding to the limit ages of 
the components. We optimize the maintenance system mean 
cost. The table 2 provides the cost of preventive and corrective 
maintenances.

Preventive maintenance cost Corrective maintenance cost
500 2000

Table 2 - Cost of maintenance

3.3 Modelling by a PDMP

Let  E be the  space  state  of  the  discrete  process  of  the 
PDMP, E is {0,1}17 (0 for down, 1 for up). Thus It models the 
states of all components at time t. Actually the process occurs 
in a slight part of E which is:

• 1: “all the components of the system work”
• 1K,i:  “the system works,  but  the component  (K,i)  is 

down” with K∈ {A,B}.
• 0S,i:  “The system has  failed,  the component  (S,i)  is 

down”
• 0K,i;L,j:  “the system has  failed,  the components  (K,i) 

and (L,j) are down” with K∈ {A,B} and L∈ {A,B,S}

Xt describes the age of all components at time t. There are 
seventeen components, so the continuous process space state 
is R17.

In  our  case,  the  equation  (1)  is  simple  since  the 

environmental  variables  are  components  ages.  Be  xK,i  the 
component (K,i) age. When component (K,i),  K∈ {A,B,S}, is 
aging  g1(xK,i,t)=xK,i+t is  the  solution.  In  some  cases,  when 
component (K,i) doesn’t work, it’s not aging so g2(xK,i,t)=xK,i is 
the solution. For a component from part S, if it works, g1 is the 
solution of (1), else it is g2. For a component in part A or B, g1  

is the solution of (1) if this component and all the components 
on the same circuit work, else it is g2.

Let’s write the jump rates for the air conditioning system. 
In what follows, K∈ {A,B} and  L∈ {A,B,S} and  K ≠ L. The 
process jumps when a component fails or when the system is 
repaired. Let’s note aK,i(xK,i)  the failure rate of the component 
(K,i)  with  K∈ {A,B,S}.  The  failure  rates  are  not  constant 
because the components lifetime distributions are Weibull’s. 
The  transition rates  between  states  when a  component  fails 
are:

( ) ( )iSiSiS xaxa ,,, ,0,1 =
( ) ( )iKiKiK xaxa ,,, ,1,1 =

( ) ( )jLjLiLiKiK xaxa ,,,;,, ,0,1 =

The figure 2 describes the transitions between the states 
of the process.

Figure 2 - Modelling of the air conditioning system

When  a  component  fails,  the  components  age  doesn’t 
change  but  when  the  system  is  repaired,  the  age  of  the 
components which have been changed by new ones becomes 
equal to 0. So the process continuous part distributions after a 
jump are:
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If we want to model a preventive maintenance at time T, 
we must create  a  new physical  variable  that  remembers  the 
time since entry into service. So T is the boundary of that new 
variable. After this variable reaches  T, it is no longer needed 



and the ages of the components are reset to zero if they are 
above  their  limit  age.  Let  u(K,i)  be  the  limit  age  of  the 
component  (K,i),  the  process  continuous  part  distributions 
after the time T is reached are:
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To  model  the  opportunistic  maintenance,  we  have  to 
change the distributions of the process after a jump. Again, let 
u(K,i) be the limit age of the component (K,i).
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3.4  Cost function

A  maintenance  strategy  is  optimized  on  the  system 
maintenance cost on a period of thirty years. Are considered : 
the system failure cost  Cd, the component (M,k) replacement 
cost C(M,k) and the preventive maintenance cost CPM. Be Nd, the 
system failures number and N(M,k), the replacement number of 
component (M,k).

The cost function is given by the following:
( ) ( )

( )
PM

kM
kMkMdd CNCNCC ++= ∑

,
,, (3)

The simulated annealing algorithm searches the strategy 
which minimizes the expected value of C.

3.5 Results of the mean cost optimization

For  calculations,  the  discretization  step  of  the 
environmental  variable  space  state,  noted  h,  is  one  month 
(1/12).  The  test  computation  time  of  one  strategy  is  25 
seconds. 

The  table  3  shows  the  component  limit  ages  of  the 
system. During preventive or opportunistic maintenance, if a 
component is older than its limit age, it is replaced by a new 
one. For example, with the preventive maintenance strategy, 
when the system reaches 16 years old, if the component (S,1) 
is older than 6 years, it is replaced by a new one. 

To  find  those  strategies,  the  simulated  annealing 
algorithm had to do between 200 and 300 tests. To accelerate 
the  calculations,  we  begin  with  a discretization  step  of  the 
environmental variable space state equals to four months (1/3). 
When  the  algorithm  approaches  the  solution,  the  step  is 
switched to one month. 

With these strategies, we reduce the maintenance cost of 
7% with respect  to  cost  without  preventive  and opportunist 
maintenance.  The mean number of failures obtained with the 
preventive  maintenance  is  lower  than  the  opportunistic 
maintenance (see table 4) : the preventive maintenance is the 
most efficient.

Limit ages
Preventive 

maintenance at 16 
years

Opportunistic 
maintenance

S,1 6 16
S,2 4 8
S,3 Do not replace Do not replace
S,4 Do not replace Do not replace
S,5 Do not replace Do not replace
S,6 5 8
S,7 11 16

A-B,1 14 16
A-B,2 Do not replace Do not replace
A-B,3 Do not replace Do not replace
A-B,4 Do not replace Do not replace
A-B,5 6 13

Table 3 – Optimal strategies to minimize the mean cost

Mean cost (€) Mean number of 
failures

Without 
preventive or 
opportunistic 
maintenance

17293 6.4

Preventive 
maintenance 16029 (-7.3%) 4.97 (-22.3%)

Opportunistic 
maintenance 16064 (-7.1%) 5.1 (-20.3%)

 Table 4 - Results of the mean cost optimization

Figure 3 - Cumulative cost of the air conditioning system 
during 30 years



The figure 3 represents the system cumulative cost during 
thirty years. Preventive maintenance at sixteen years leads to a 
huge  investment.  Opportunistic  maintenance  appears  not  to 
cause  such  investments  ;  but  actually  it  does  :  the  review 
moment is stochastic and not deterministic.

The figure 4 is the system failure rate with and without 
preventive  maintenance.  The  opportunistic  one  does  not 
change this because it doesn’t influence the first failure.

The figure 5 is the system failures mean number year by 
year.

Figure 4 - Failure rate of the air conditioning system with and 
without preventive maintenance

Figure 5 – Failures mean number of the air conditioning 
system year by year

4 COMPARISON WITH MONTE CARLO SIMULATIONS

To compare the finites volume algorithm and the Monte 
Carlo simulations, we make the mean cost and failures mean 
number  calculations  of  the  air  conditioning  system  without 

preventive  and  opportunistic  maintenance.  We simulate  106 

histories  for  the  Monte  Carlo  method.  To  test  the  finite 
volumes  algorithm,  two different  discretization  steps  of  the 
environmental variable space state (h) are used : one month 
(1/12) and four months (1/3). The table 7 shows the results 
found with these two methods. They are similar but the finite 
volumes algorithm is the fastest one. The calculations with the 
finite volumes algorithm and a discretization step of  1/3 are 
executed in 3 seconds ; but the results are less accurate.

The histories number can be decreased  to accelerate the 
calculations  with the Monte Carle simulations.  Nevertheless 
the  confidence  interval  may  be  too  large.  Moreover  if  the 
calculations  are  made  twice,  the  same  results  may  not  be 
obtained. These tie up the optimization. 

Mean cost 
(€)

Mean 
number of 

failures
CPU time

Finite volume 
(h=1/12) 17293 6.4 25

Finite volume 
(h=1/3) 17492 6.48 3

Monte Carlo 17160 6.34 1000

Table 5 – Results with the finite volume algorithm (with two 
different discretization steps h) and the Monte Carlo 

simulations

CONCLUSIONS

To  conclude,  this  method  quickly  gives  us  reliability 
quantities that allow us to find an optimal maintenance. The 
methodology  can  be  used  for  many  systems.  However  the 
limitations  are  the  number  of  aging  components  and  the 
system complexity.  Indeed, the computational time increases 
with those two parameters. In the future, we will try to apply 
this  method  with  more  complex  systems  and  keep  the 
computational  time low. Now, we are searching importance 
and sensibility indicators so we can tell which component is 
essential.
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